Интерферометр рэлея. Двухлучевые интерферометры. Интерферометры Рэлея, Жамена, Майкельсона, Линника. Многолучевые интерферометры (интерферометр Фабри-Перо, пластинка Люммера-Герке). Интерференционные фильтры Интерферометр рэлея

Схема интерферометра Рэлея

Интерферо́метр Рэле́я - однопроходной двулучевой интерферометр , разделяющий свет от источника на два потока, разница фаз между которыми создаётся пропусканием света сквозь две одинаковые кюветы , заполненные разными газами . Впервые был предложен лордом Рэлеем в 1886 году. Использовался для определения показателей преломления газов.

Принципиальная схема

Свет от источника пропускается через линзу , создающую параллельный пучок и апертуры , вырезающие из него два луча (плечи интерферометра). Каждый из лучей проходит сквозь собственную кювету с газом. На выходе схемы расположена линза, сводящая оба пучка вместе для получения интерференционных полос в её фокусе .

Для измерений в одно из плеч вносится компенсатор - например, стеклянная пластинка, с помощью поворота которой можно изменять оптическую длину пути луча в плече. Если показатель преломления в одном из плеч равен n , то второй неизвестный показатель преломления равен

n ′ = n + λ 0 ℓ Δ m , {\displaystyle n"=n+{\frac {\lambda _{0}}{\ell }}\Delta m,}

где ℓ {\displaystyle \ell } - длина кюветы с газом, λ 0 {\displaystyle \lambda _{0}} - длина волны источника света, Δ m {\displaystyle \Delta m} - порядок интерференции (количество пересекающихся в заданной точке интерференционных полос). При типичных параметрах установки - длине кювет в один метр, длине волны в 550 нм и порядке интерференции 1/40, - можно измерить разницу показателей преломления, равную 10 −8 . Чувствительность интерферометра определяется длиной кюветы. Её максимальная длина, как правило, определяется техническими возможностями контроля за температурой, так как тепловые

что позволяет использовать его для точного определения показателей преломления газов при давлении, близком к атмосферному (при этом давлении соответствующий показатель преломления отличается от единицы в четвертом-пятом знаке после запятой).

Параллельный пучок света падает на плоскопараллельную стеклянную пластину М 1 , на заднюю поверхность которой нанесено металлическое зеркало. Два отраженных пучка оказываются при достаточной толщине пластины пространственно разделенными, и направляются порознь в две кюветы с исследуемым газом и газом сравнения соответственно (n 1 и n 2). Прошедшие пучки отражаются от еще одной такой же стеклянной пластины М 2 . Таким образом, оба отраженных пучка оказываются равными по интенсивности, и сводятся в фокальной плоскости линзы Л. В результате, возникает интерференционная картина из горизонтальных полос на экране Э. При этом при отсутствии по ходу распространения пучков объектов с показателями преломления n 1 и n 2 нулевой максимум интерференционной картины лежит на оси системы. При варьировании давления воздуха полосы на экране смещаются.

A
C
B
3. Интерферометр Майкельсона .

Этот прибор сыграл очень важную роль в истории науки. С его помощью, например, было доказано отсутствие «мирового эфира».

Параллельный пучок света от источника S, прошедший через линзу, попадает на полупрозрачную пластинку P 1 , где разделяется на пучки 1 и 2. После отражения от зеркал M 1 и M 2 и повторного прохождения через пластинку P 1 оба пучка попадают в объектив O. Оптическая разность хода DL= 2(AC - AB) = 2l , где l - расстояние между зеркалом M 2 и мнимым изображением M¢ 1 зеркала M 1 в пластинке P 1 . Таким образом, наблюдаемая интерференционная картина эквивалентна интерференции в воздушной пластинке толщиной l. Если зеркало M 1 расположено так, что M¢ 1 и M 2 параллельны, то образуются полосы равного наклона, локализованные в фокальной плоскости объектива O и имеющие форму концентрических колец. Если же M 2 и M¢ 1 образуют воздушный клин, то возникают полосы равной толщины, локализованные в плоскости клина M 2 M¢ 1 и представляющие собой параллельные линии.



Интерферометр Майкельсона широко используется в физических измерениях и технических приборах. С его помощью впервые была измерена абсолютная величина длины волны света, доказана независимость скорости света от движения Земли. Перемещая одно из зеркал интерферометра Майкельсона, получают возможность анализировать спектральный состав падающего излучения. На этом принципе построены Фурье-спектрометры, применяющиеся для длинноволновой инфракрасной области спектра (50-1000 мкм) при решении задач физики твёрдого тела, органической химии и химии полимеров, диагностики плазмы.

Интерферометр Майкельсона позволяет измерять длины с точностью 20-30 нм. Устройство используется и сегодня в астрономических, физических исследованиях, а также в измерительной технике. В частности, интерферометр Майкельсона лежит в основе оптической схемы современных лазерных гравитационных антенн.

4. Интерферометр Маха-Цендера .

Австрийский физик Эрнст Мах, крупный исследователь процессов аэродинамики, сконструировал специальный интерферометр с широкими пучками и большим расстоянием между зеркалами для съёмки ударных волн и скачков уплотнения воздушных потоков, обтекающих различные тела. Показатель преломления воздуха в уплотнённом потоке выше, чем в невозмущённой среде. Это отражается на форме линий интерференции.

Лекция 15. Дифракция света .

Принцип Гюйгенса-Френеля. Метод зон Френеля. Векторная диаграмма. Дифракция от круглого отверстия и круглого диска. Дифракция Фраунгофера от щели. Предельный переход от волновой оптики к геометрической .

Дифракция – это явление отклонения от прямолинейного распространения света, если оно не может быть следствием отражения, преломления или изгибания световых лучей, вызванным пространственным изменением показателя преломления. При этом отклонение от законов геометрической оптики тем меньше, чем меньше длина волны света.

Замечание . Между дифракцией и интерференцией нет принципиального различия. Оба явления сопровождаются перераспределением светового потока в результате суперпозиции волн.

Примером дифракции может служить явление при падении света на непрозрачную перегородку с отверстием. В этом случае на экране за перегородкой в области границы геометрической тени наблюдается дифракционная картина.

Принято различать два вида дифракции. В случае, когда падающую на перегородку волну можно описать системой параллельных друг другу лучей (например, когда источник света находится достаточно далеко), то говорят о дифракции Фраунгофера или дифракции в параллельных лучах. В остальных случаях говорят о дифракции Френеля или дифракции в расходящихся лучах .

При описании явлений дифракции необходимо решить систему уравнений Максвелла с соответствующими граничными и начальными условиями. Однако нахождение такого решения в большинстве случаев является весьма затруднительным. Поэтому в оптике часто применяют приближённые методы, основанные на принципе Гюйгенса в обобщённой формулировке Френеля или Кирхгофа.

Принцип Гюйгенса .

Формулировка принципа Гюйгенса . Каждая точка среды, до которой в некоторый момент времени t дошло волновое движение, служит источником вторичных волн. Огибающая этих волн даёт положение фронта волны в следующий близкий момент времени t +dt . Радиусы вторичных волн равны произведению фазовой скорости света на интервал времени: .

Границы геометрической тени
Иллюстрация этого принципа на примере волны, падающей на непрозрачную перегородку с отверстием, показывает, что волна проникает в область геометрической тени. Это является проявлением дифракции. Однако принцип Гюйгенса не даёт оценок интенсивности волн, распространяющихся в различных направлениях.

Принцип Гюйгенса-Френеля .

Френель дополнил принцип Гюйгенса представлением об интерференции вторичных волн. По амплитудам вторичных волн с учётом их фаз можно найти амплитуду результирующей волны в любой точке пространства.

Каждый малый элемент волновой поверхности является источником вторичной сферической волны, амплитуда которой пропорциональна величине элемента dS и уравнение которой вдоль луча имеет вид:

где a 0 - коэффициент, пропорциональный амплитуде колебаний точек на волновой поверхности dS , - коэффициент, зависящий от угла q между лучом и вектором, и такой, что при он принимает максимальное значение, а при - минимальное (близкое к нулю).

Результирующее колебание в некоторой точке наблюдения Р тогда определяется аналитическим выражением принципа Гюйгенса-Френеля, которое вывел Кирхгоф:

dS
Интеграл берётся по волновой поверхности, зафиксированной в некоторый момент времени. Для свободно распространяющейся волны значение интеграла не зависит от выбора поверхности интегрирования S .

Явное вычисление по этой формуле довольно трудоёмкая процедура, поэтому на практике можно применять приближённые методы нахождения этого интеграла.

Для нахождения амплитуды колебаний в точке наблюдения P всю волновую поверхность S можно разбить на участки или зоны Френеля. Предположим, что мы наблюдаем дифракцию в расходящихся лучах (дифракцию Френеля), т.е. рассматриваем сферическую волну, распространяющуюся от некоторого источника L . Пусть волна распространяется в вакууме.

Зафиксируем волновую поверхность в некоторый момент времени t . Пусть радиус этой поверхности равен a . Линия LP пересекает эту поверхность в точке О . Предположим, что расстояние между точками О и Р равно b . От точки Р последовательно откладываем сферы, радиусы которых. Две соседние сферы «отсекают» на волновой поверхности кольцевые участки, называемые зонами Френеля. (Как известно, две сферы пересекаются по окружности, лежащей в плоскости, перпендикулярной прямой, на которой лежат центры этих сфер). Найдём расстояние от точки О до границы зоны с номером m . Пусть радиус внешней границы зоны Френеля равен r m . Т.к. радиус волновой поверхности равен a , то

При этом одновременно, .

Поэтому, откуда.

Для длин волн видимого диапазона и не очень больших значений номеров m можно пренебречь слагаемым по сравнению с m l. Следовательно, в этом случае, и для квадрата радиуса получаем выражение: , в котором опять можно пренебречь последним слагаемым. Тогда радиус m -й зоны Френеля (для дифракции в расходящихся лучах):

Следствие . Для дифракции в параллельных лучах (дифракции Фраунгофера) радиус зон Френеля получается предельных переходом a ®¥:

Теперь сравним площади зон Френеля. Площадь сегмента сферической поверхности, лежащей внутри m -й зоны, как известно, равна: . Зона с номером m заключена между границами зон с номерами m и m -1. Поэтому её площадь равна:

После преобразований выражение примет вид: .

Если пренебречь величиной, то из выражения следует, что при небольших номерах площадь зон не зависит от номера m .

b +D
b +2×D
b +3×D
b + D
P
O
зона № 1
зона № 1.1
зона № 1.2
зона № 1.3
зона № 1.n и т.д.
A 1.1
A 1.2
A 1.3
d
d
A 1. S

Нахождение результирующей амплитуды в точке наблюдения Р производится следующим образом. Т.к. излучаемые вторичные волны являются когерентными и расстояния от соседних границ до точки Р отличаются на половину длины волны, то разность фаз колебаний от вторичных источников на этих границах, приходящих в точку Р , равна p (как говорят, колебания приходят в противофазе). Аналогично, для любой точки какой-нибудь зоны обязательно найдётся точка в соседней зоне, колебания от которой приходят в точку Р в противофазе. Величина амплитуды волнового вектора пропорциональна величине площади зоны: . Но площади зон одинаковые, а с ростом номера m возрастает угол q, поэтому величина убывает. Поэтому можно записать упорядоченную последовательность амплитуд: . На амплитудно -векторной диаграмме с учётом разности фаз эта последовательность изображается противоположно направленными векторами, поэтому

Разобьём первую зону на большое количество N внутренних зон таким же, как и выше, образом, но теперь расстояния от границ двух соседних внутренних зон до точки Р будут отличаться на малую величину. Поэтому разность фаз волн, приходящих в точку Р, будет равна малой величине. На амплитудно-векторной диаграмме вектор амплитуды от каждой из внутренних зон будет повёрнут на малый угол d относительно предыдущего, поэтому амплитуде суммарного колебания от нескольких первых внутренних зон будет соответствовать вектор, соединяющий начало и конец ломаной линии. При увеличении номера внутренней зоны суммарная разность фаз будет нарастать и на границе первой зоны станет равной p. Это означает, что вектор амплитуды от последней внутренней зоны направлен противоположно вектору амплитуды от первой внутренней зоны. В пределе бесконечно большого числа внутренних зон эта ломаная линия перейдет в часть спирали.

F
Амплитуде колебаний от первой зоны Френеля тогда будет соответствовать вектор, от двух зон - и т.д. В случае, если между точкой Р и источником света нет никаких преград, из точки наблюдения будет видно бесконечное число зон, поэтому спираль будет навиваться на точку фокуса F . Поэтому свободной волне с интенсивностью I 0 соответствует вектор амплитуды, направленный в точку F .

Из рисунка видно, что для амплитуды от первой зоны можно получить оценку: , поэтому интенсивность от первой зоны - в 4 раза больше интенсивности падающей волны. Равенство можно трактовать и по-другому.

Если для бесконечного числа открытых зон суммарную амплитуду записать в виде: ,

где m – чётное число, то из равенства следует оценка: .

Замечание . Если каким-то образом изменить фазы колебаний в точке Р от чётных или нечётных зон на p, или закрыть чётные или нечётные зоны, то суммарная амплитуда увеличится по сравнению с амплитудой открытой волны. Таким свойством обладает зонная пластинка - плоскопараллельная стеклянная пластинка с выгравированными концентрическими окружностями, радиусы которых совпадают с радиусами зон Френеля. Зонная пластинка «выключает» чётные либо нечётные зоны Френеля, что приводит к увеличению интенсивности света в точке наблюдения.

Дифракция на круглом отверстии .

Рассуждения, приведённые выше, позволяют сделать вывод, что амплитуда колебаний в точке Р зависит от числа зон Френеля. Если для точки наблюдения открыто нечётное число зон Френеля, то в этой точке будет максимум интенсивности. Если открыто чётное число зон – то минимум интенсивности.

Дифракционная картина от круглого отверстия имеет вид чередующихся светлых и тёмных колец.

При увеличении радиуса отверстия (и увеличения числа зон Френеля) чередование тёмных и светлых колец будет наблюдаться только вблизи границы геометрической тени, а внутри освещённость практически не будет меняться.

Дифракция на малом диске .

Рассмотрим схему опыта, в котором на пути световой волны расположен непрозрачный круглый диск, радиус которого соизмерим с радиусами первых зон Френеля.

Для рассмотрения дифракционной картины помимо обычных зон построим дополнительные зоны от края диска.

b
b +(l/2)
b +2(l/2)
b +3 (l/2)
P
O
L
зона № 3 зона № 2 зона № 1 и т.д.
a

Зоны Френеля от края диска будем строить по прежнему принципу - расстояния от границ двух соседних зон до точки наблюдения отличаются на половину длины волны. Амплитуда в точке наблюдения

с учётом оценки будет равна. Следовательно, в точке наблюдения, в центре геометрической тени всегда будет светлое пятно – максимум интенсивности. Это пятно называется пятном Пуассона .

Пример. На непрозрачный диск диаметром D =0,5 см нормально падает плоская монохроматическая волна, длина которой l=700 нм. Найти диаметр отверстия в центре диска, при котором интенсивность света в точке Р экрана (на оси системы) будет равна нулю. Расстояние между диском и экраном L =2,68 м.

Решение. Найдём число обычных зон Френеля, которые закрыты диском. Номер зоны найдём из формулы для радиуса зон Френеля при дифракции Фраунгофера: , .

A 3 ,33
F
30 0
A ОТВ
Т.е. диск закрывает 3 целых зоны и еще одну треть. Построим спираль Френеля. Граничной точке этой части в 3,33 зоны соответствует угол наклона к горизонтали, равный 30 0 . Все остальные зоны открыты, поэтому вектор амплитуды направлен от граничной точки зоны Френеля в точку F . Чтобы в точке наблюдения Р интенсивность была равна нулю, надо, чтобы вектор амплитуды колебаний от отверстия был равным по длине, но противоположным по направлению вектору. Следовательно, он также должен быть наклонен к горизонтали под углом в 30 0 . В этом случае отверстие должно открывать 1,67 части зоны Френеля. Для m =1,67 получаем радиус отверстия: м.§

Воспользовавшись выводами теории дифракции, можно утверждать, что свет от вторичных источников в опыте Юнга имеет наибольшую интенсивность в направлении геометрических лучей от первичного источника . В опыте Юнга эти лучи за экраном расходятся, но с помощью линзы, поставленной перед отверстиями (рис. 7.12), их можно свести в точку О, сопряженную относительно линзы с Тогда интенсивность интерференционной картины вблизи О увеличивается, и можно наблюдать интерференционные полосы при отверстиях находящихся значительно дальше друг от друга. Расстояние между соседними светлыми полосами по-прежнему равно и если линза дает стигматическое изображение точки то, согласно принципу равенства оптического

пути, полоса нулевого порядка будет располагаться в О. Если же линза не дает стигматического изображения, полоса нулевого порядка сместится на О на величину, зависящую от оптической разности хода от 5 до О через оба отверстия. При оптической разности хода смещение будет в раз больше расстояния между соседними светлыми полосами, где

Очевидно, что такое устройство можно использовать для количественного испытания качества линз, как это было сделано Майкельсоном . Если одно из отверстий неподвижно относительно центра линзы, то, измеряя при различных положениях другого отверстия, можно определить от клонение волнового фронта, идущего из от сферичности после прохождения линзы (волновая аберрация). Аналогично, если прозрачная пластинка толщиной I с показателем преломления помещена в пучок света, идущий от то оптическая длина пути увеличивается на и порядо интерференции в точке О изменится на величину

Измеряя можно определить разность между показателями преломления пластинки и окружающей среды. На этом основано устройство интерферометра Рэлея , применяемого для точных измерений показателей преломления газов. Схема современной модели этого прибора показана на рис. 7.13. Свет от щели коллимируется линзой и затем падает на две другие щели параллельные

Рис. 7.13. Схема интерферометра Рэлея, а - горизонтальное сечение, - вертикальное сечение.

Параллельные пучки света от и проходят через разные газовые кюветы и собираются линзой в фокальной плоскости которой образуются интерференционные полосы, параллельные щелям. Помещение газовых кювет в пучки света заставляет значительно увеличить расстояние между щелями и вследствие чего интерференционные полосы располагаются тесно, и для их наблюдения требуется большое увеличение. Ширина щели также не может быть большой, и, следовательно, яркость картины невелика. Так как увеличение требуется только в направлении, перпендикулярном к полосам, то для этой цели хорошо подходит цилиндрический окуляр в виде тонкой стеклянной палочки с длинной осью, параллельной полосам. Картина, рассматриваемая таким образом, значительно ярче, чем при использовании сферического окуляра. Применение цилиндрического окуляра имеет еще и другое важное преимущество, позволяя получить ьторую фиксированную систему полос с таким же расстоянием между полосами, как и у главной, но образованную светом от источников прошедшим ниже газовых кювет. Вторая система полос может служить шкалой для отсчета. С помощью стеклянной пластинки эту шкалу смещают по вертикали так, чтобы ее верхний край соприкасался с нижним краем главной системы. Резкая линия раздела между пими - это край пластинки наблюдаемый через линзу

Следовательно, определение смещения главной системы полос, обусловленного изменением оптических путец в кюветах целиком зависит от остроты зрения глаза, которая, вообще говоря, велика, и таким способом можно обнаружить смещения, примерно равные 1/40 порядка. Случайные смещения в оптической системе также становятся менее существенными, так как сказываются одновременно на обеих системах полос.

На практике удобнее компенсировать оптическую разность хода, а не считать полосы. Это делается следующим образом: свет, выходящий из газовых кювет, проходит через тонкие стеклянные пластинки, одна из которых неподвижна, а другая может вращаться вокруг горизонтальной оси, что позволяет плавно изменять оптическую длину пути света, выходящего из

Такой компенсатор калибруется в монохроматическом свете для того, чтобы определить величину поворота пластинки, соответствующую смещению на один порядок в главной системе полос. В этом случае система полос служит нуль-индикатором равенства оптических путей и Обычно работа с прибором происходит следующим образом: газовые кюветы откачивают, и в белом свете с помощью компенсатора примерно совмещают полосы главной системы и шкалы; затем добиваются точного совпадения пулевых порядков в монохроматическом свете, после чего одну из кювет заполняют исследуемым газом и снова, сперва в белом свете, а потом в монохроматическом совмещают, используя компенсатор, нулевые порядки. Разница между двумя установками компенсатора позволяет определить по его калибровке смещение порядка в главной системе полос, вызванное присутствием газа в кювете. Показатель преломления этого газа находят из (28), а именно:

где длина газовой кюветы. При обычных значениях и точности установки в 1/40 порядка можно обнаружить изменение около

Оптические пути от и до места наблюдения интерференционной картины проходят среды с различной дисперсией; поэтому, в отличие от простого случая, рассмотренного в нулевые порядки в свете разных длин воли, вообще говоря, не совпадают, и в белом свете отсутствует совершенно белая полоса. У наименее окрашенной полосы для некоторой средней длины волны (в видимой области спектра), которая зависит от цветовой чувствительности глаза. По аналогии с терминологией, принятой при описании линз, эта полоса называется ахроматической. Если компенсатор вводит оптическую разность хода Л, то порядок интерференции в точке О равен

Поэтому в точке О ахроматическая полоса будет тогда, когда

При такой установке компенсатора нулевой порядок картины в монохроматическом свете может не попасть в точку О, так как для их совпадения требуется, чтобы

Это несовпадение может оказаться достаточно большим, чтобы затруднить идентификации полосы нулевого порядка в монохроматическом свете, и поэтому приходится прибегать к предварительным измерениям при малом давлении или с короткой кюветой.

Заметим также, что ахроматическая полоса хорошо распознается, только если в тех точках картины, где область значений для длин волн видимою спектра достаточно мала. При наблюдении в белом свете пути интерферирующих волн в средах с одинаковой дисперсией должны быть по возможности равными.

Большую чувствительность в принципе можно получить, увеличивая I, но этому препятствуют трудности контроля температуры. По той же причине в модели прибора, предназначенного для измерения разности показателей преломления жидкостей, применяются только короткие кюветы. Кроме того, разность хода, которую можно скомпенсировать, ограничена, и поэтому при большой разнице показателей преломления в кюветах длина их должна быть пропорционально уменьшена.


Интерферометр Рэлея

Схема интерферометра Рэлея

Интерферо́метр Рэле́я - однопроходной двулучевой интерферометр , разделяющий свет от источника на два потока, разница фаз между которыми создаётся пропусканием света сквозь две одинаковые кюветы , заполненные разными газами . Впервые был предложен лордом Рэлеем в 1886 году. Использовался для определения показателей преломления газов.

Принципиальная схема

Свет от источника пропускается через линзу , создающую параллельный пучок и апертуры , вырезающие из него два луча (плечи интерферометра). Каждый из лучей проходит сквозь собственную кювету с газом. На выходе схемы расположена линза, сводящая оба пучка вместе для получения интерференционных полос в её фокусе .

Для измерений в одно из плеч вносится компенсатор - например, стеклянная пластинка, с помощью поворота которой можно изменять оптическую длину пути луча в плече. Если показатель преломления в одном из плеч равен n , то второй неизвестный показатель преломления равен

где - длина кюветы с газом, - длина волны источника света, - порядок интерференции (количество пересекающихся в заданной точке интерференционных полос). При типичных параметрах установки - длине кювет в один метр, длине волны в 550 нм и порядке интерференции 1/40, - можно измерить разницу показателей преломления, равную 10 −8 . Чуствительность интерферометра определяется длиной кюветы. Её максимальная длина, как правило, определяется техническими возможностями контроля за температурой, так как тепловые флуктуации будут искажать показатели преломления газов.

Литература

  • Max Born , Вольф, Эмиль (англ. Emil Wolf ) Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. - 7th. - CUP Archive, 2000. - P. 299-302. - 986 p. - ISBN 9780521784498
  • P. Hariharan Basics of interferometry. - Academic Press, 2007. - P. 15. - 226 p. - ISBN 9780123735898

Wikimedia Foundation . 2010 .

Смотреть что такое "Интерферометр Рэлея" в других словарях:

    интерферометр Рэлея - Reilėjaus interferometras statusas T sritis fizika atitikmenys: angl. Rayleigh interferometer vok. Rayleighsches Interferometer, n rus. интерферометр Рэлея, m pranc. interféromètre de Rayleigh, m … Fizikos terminų žodynas

    Измерительный прибор, основанный на интерференции волн. Существуют И. для звук. волн и для эл. магн. волн (оптических и радиоволн). Оптич. И. применяются для измерения оптич. длин волн спектр. линий, показателей преломления прозрачных сред, абс.… … Физическая энциклопедия

    См. Интерферометр Рэлея. Физическая энциклопедия. В 5 ти томах. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988 … Физическая энциклопедия

    Интерферометр измерительный прибор, принцип действия которого основан на явлении интерференции. Принцип действия интерферометра заключается в следующем: пучок электромагнитного излучения (света, радиоволн и т. п.) с помощью того… … Википедия

    РЭЛЕЯ ИНТЕРФЕРОМЕТР, интерферометр (см. ИНТЕРФЕРОМЕТР) для измерения показателя преломления на основе дифракции света на двух параллельных щелях … Энциклопедический словарь

    Двухлучевой интерферометр, состоящий из двух зеркал М1, М2 и двух параллельных полупрозрачных пластин Рис. 1. Схема интерферометра Рождественского.P1 P2 (рис. 1); M1, P1 и M2, Р2 устанавливаются попарно параллельно, но М1 и М2 наклонены… … Физическая энциклопедия

    Измерительный прибор, в котором используется Интерференция волн. Существуют И. для звуковых и для электромагнитных волн: оптических (ультрафиолетовой, видимой и инфракрасной областей спектра) и радиоволн различной длины. Применяются И.… … Большая советская энциклопедия

    - (интерференционный рефрактометр) двухлучевой интерферометр, использовавшийся для измерения малых показателей преломления газов, предложенный Жюлем Жаменом в 1856 году. Содержание 1 Устройство 2 Применение … Википедия

    - (от интерференция и... метр) прибор, в к ром явление интерференции используется для точных измерений. Для измерений показателя преломления, проверки концевых мер длины, измерений угловых размеров звёзд в астрономии, в дефектоскопии и… … Большой энциклопедический политехнический словарь

    Стретт, Джон Уильям, 3 й барон Рэлей Джон Уильям Стретт John William Strutt Дата рождения: 12 … Википедия

Двухлучевые интерферометры. Интерферометры Рэлея, Жамена, Майкельсона, Линника. Многолучевые интерферометры (интерферометр Фабри-Перо, пластинка Люммера-Герке). Интерференционные фильтры

Если зеркало М1 расположено так что М´1 и М2 параллельны образуются полосы равного наклона локализованные в фокальной плоскости объектива О2 и имеющие форму концентрических колец. Если же М1 и М2 образуют воздушный клин то возникают полосы равной толщины локализованные в плоскости клина М2 М1 и представляющие собой параллельные линии. Если поверхность исследуемого образца имеет дефект в виде впадины или выступа высотой l то интерференционные полосы искривляются. Если то интерференционная полоса искривляется так что занимает...

51. Двухлучевые интерферометры. Интерферометры Рэлея, Жамена, Майкельсона, Линника. Многолучевые интерферометры (интерферометр Фабри-Перо, пластинка Люммера-Герке). Интерференционные фильтры

Интерферометр – измерительный прибор, действие которого основано на интерференции волн. Оптические интерферометры применяются для измерения оптических длин волн спектральных линий, показателей преломления прозрачных сред, абсолютных и относительных длин объектов, угловых размеров звёзд и пр., для контроля качества оптических деталей и их поверхностей и т.д.

Интерферометры различаются методами получения когерентных волн и тем, какая величина непосредственно измеряется. По числу интерферирующих пучков света оптические интерферометры можно разделить на многолучевые и двулучевые . Многолучевые интерферометры применяются главным образом как интерференционные спектральные приборы для исследования спектрального состава света. Двулучевые интерферометры используются и как спектральные приборы, и как приборы для физических и технических измерений.

Двулучевые интерферометры

Параллельный пучок света, сформированный в результате прохождения от источника L через объектив O 1 , попадает на полупрозрачную пластинку P и разделяется на два когерентных пучка 1 и 2 . После отражения от зеркал M 1 и M 2 и повторного прохождения пучка 2 через пластинку P оба пучка проходят в направлении АО через объектив О 2 и интерферируют в его фокальной плоскости D .

Наблюдаемая интерференционная картина соответствует интерференции в воздушном слое, образованном зеркалом М 2 и мнимым изображением М’ 1 зеркала М 1 в пластинке Р 1 . Оптическая разность хода при этом равна , где l – расстояние между М’ 1 и М 2 . Если зеркало М 1 расположено так, что М´ 1 и М 2 параллельны, образуются полосы равного наклона, локализованные в фокальной плоскости объектива О 2 и имеющие форму концентрических колец. Если же М’ 1 и М 2 образуют воздушный клин, то возникают полосы равной толщины, локализованные в плоскости клина М 2 М’ 1 и представляющие собой параллельные линии.

Интерферометром Майкельсона широко пользуются в физических измерениях и технических приборах. С его использованием впервые была измерена абсолютная величина длины волны света, доказана независимость скорости света от движения источника и др. Он используется и как спектральный прибор для анализа спектров излучения с высоким разрешением (до ~ 0,005 см -1 ).

Аналогично интерферометру Майкельсона устроен микроинтерферометр Линника. В нём светоделительным устройством служит склеенный из двух прямоугольных призм кубик. Граница, по которой склеены призмы, полупрозрачна, поэтому интерферирующие пучки одинаковы по интенсивности. В фокальной плоскости объектива одновременно видны поверхность исследуемого объекта, которым заменяют зеркало М 2 , и интерференционную картину. Если поверхность исследуемого образца имеет дефект в виде впадины или выступа высотой l , то интерференционные полосы искривляются. Если , то интерференционная полоса искривляется так, что занимает положение полосы, для которой порядок интерференции отличается на единицу от анализируемой полосы. Если искривление полосы составляет k полос, то оптическая разность хода, обусловленная дефектом поверхности , откуда легко найти высоту неровности: . Микроинтерферометр Линника применяют для контроля качества полированных металлических поверхностей.

Для измерения показателей преломления газов и жидкостей применяют интерференционные рефрактометры. Один из них – интерферометр Жамена .

Пучок S монохроматического света после отражения от передней и задней поверхностей первой стеклянной пластинки Р 1 разделяется на два пучка S 1 и S 2 . После прохождения через кюветы К 1 и К 2 и отражения от поверхностей стеклянной пластинки Р 2 , наклонённой под малым углом относительно пластинки Р 1 , пучки попадают в зрительную трубу Т и интерферируют, образуя прямые полосы равного наклона.

Если одна из кювет наполнена веществом с показателем преломления n 1 , а другая – веществом с показателем преломления n 2 , то по смещению интерференционной картины на число полос m по сравнению с ситуацией, когда обе кюветы наполнены одним и тем же веществом, можно найти разность показателей преломления , где l – длина кюветы. Точность измерения величины очень высока и может достигать седьмого и даже восьмого десятичного знака.При измерениях интерференционную полосу нулевого порядка возвращают к центру поля зрения зрительной трубы посредством компенсатора К , для которого предварительно строят график зависимости угла наклона от разности хода, выраженной в числе полос. Для монохроматизации излучения в схему прибора введён светофильтр Ф .

Для прецизионных измерений показателей преломления газов и жидкостей применяют также интерферометр Рэлея . Его оптическая схема – на рисунке 4.

Свет от щели S коллимируется линзой L 1 и затем падает на две другие щели S 1 и S 2 , параллельные щели S . Параллельные пучки света от S 1 и S 2 проходят через разные кюветы Т 1 и Т 2 , наполненные газом или жидкостью, и собираются линзой L 2 , в фокальной плоскости которой образуются интерференционные полосы, параллельные щелям. Наличием вещества в кюветах обусловлено то, что ширина интерференционных полос мала, и для наблюдения требуется большое увеличение. Так как ширина щели S мала, то невелика яркость интерференционной картины. Увеличение требуется только в направлении, перпендикулярном к полосам, поэтому используется цилиндрический окуляр O , длинная ось которого параллельна полосам. Одновременно с изучаемой интерференционной картиной формируется вторая интерференционная картина, расположенная ниже кювет. Она может служить шкалой для отсчёта. Посредством стеклянной пластинки G эту шкалу смещают по вертикали так, чтобы ей верхний край соприкасался с нижним краем главной системы полос. Резкая линия раздела между ними – это изображение края пластинки G , наблюдаемого через линзу L 2 . Таким способом можно обнаружить смещения, приблизительно равны 1/40 ширины полосы. На практике удобнее компенсировать оптическую разность хода, а не считать полосы. Компенсация достигается следующим образом: свет, выходящий из кювет, проходит через тонкие стеклянные пластинки, одна из которых (С 1 ) неподвижна, а другая (С 2 ) может вращаться вокруг горизонтальной оси. При этом удаётся плавно изменять оптическую длину пути источника, выходящего из щели S 2 . Компенсатор С 2 калибруется в монохроматическом свете, чтобы определить угол поворота, соответствующий смещению на один порядок в главной системе полос. Нижняя система полос служит нуль-индикатором. При работе сначала с откачанными кюветами добиваются приблизительного совмещения нулевых полос в обеих картинах, затем совмещают их точно в монохроматическом свете, пользуясь компенсатором. После этого одну кювету заполняют исследуемым газом и снова совмещают нулевые порядки. По разности углов поворота компенсатора определяют смещение Δ m в главной системе полом, пользуясь градуировочным графиком компенсатора. Показатель преломления газа n ´ находят по формуле , где l длина кюветы с газом, λ 0 – длина волны в вакууме. Обнаруживается порядка 10 -8 .

Многолучевые интерферометры

Простейший многолучевой интерферометр реализуется на основе пл а стинки Люммера – Герке , которая представляет собой высококачественную прозрачную плоскопараллельную пластинку, толщина которой l и показатель преломления n . Показатель преломления среды вне пластинки n ´ = 1 (рисунок 5). Амплитудные коэ ф фициенты отражения и пропускания – соответственно  и  .

Интерферирующие пучки усилят друг друга, если разность хода между ними равна целому числу длин волн: , где т = 0, 1, 2, … . Минимальная интенсивность будет наблюдаться при т =1/2, 3/2, … . Наибольший порядок интерференции , который можно получить в многолучевом интерферометре, (т ~ 20000). Область свободной дисперсии мала. Поэтому многолучевой интерферометр используют только для исследования контуров спектральных линий, выделенных другим спектральным прибором.

Пластинка Люммера – Герке применяется редко. Более распространённый способ получения интерференции многих пучков основан по использовании интерферометров Фабри – Перо .

Основные части интерферометра Фабри – Перо – две стеклянные или кварцевые платины P 1 и P 2 с плоскими поверхностями. Поверхности, образующие воздушный зазор, покрыты частично прозрачными плёнками и строго параллельны друг другу. Чтобы устранить вредное влияние света, отражённого внешними поверхностями, пластины делают немного клиновидными. Интерферометр Фабри – Перо формирует интерференционные полосы равного наклона в виде концентрических колец. Достаточно просто можно наблюдать интерференционную картину от интерферометра Фабри−Перо, используя в качестве источника лазер.

В условиях нормального падения света на однородную прозрачную пластинку многолучевая интерференция может быть использована для выделения излучения в узкой (10 – 20 нм) спектральной области. Именно таков принцип действия интерференционных светофильтров (рисунок 7).


Рисунок 1 - Схема интерферометра Майкельсона

О 2

О 1

М 1

М ’ 1

Рисунок 2 - Схема микроинтерферометра Линника

О 2

О 1

М 1

М ’ 1

Рисунок 3 - Схема интерферометра Жамена

а – горизонтальное сечение; б – вертикальное сечение

Рисунок 4 – Схема интерферометра Рэлея

Рисунок 5 - Ход лучей через пластинку Люммера - Герке

E 00

 2

 E 00

 E 00

 2 E 00

 2 E 00

 2  2 E 00 e i 

Рисунок 6 – Схема интерферометра Фабри - Перо

Промежуточный слой из диэлектрика

Частично отражающие плёнки

Стекло

Рисунок 7 – Интерференционный фильтр типа Фабри - Перо


А также другие работы, которые могут Вас заинтересовать

12971. ПОЖАРНАЯ СИГНАЛИЗАЦИЯ 731.5 KB
ПОЖАРНАЯ СИГНАЛИЗАЦИЯ. Охранно-пожарная сигнализация. Извещатели пожарной сигнализации. Размещение пожарных извещателей. Приёмноконтрольные приборы...
12972. АППАРАТ ДЛЯ ВОССТАНОВЛЕНИЯ ДЫХАНИЯ «ГОРНОСПАСАТЕЛЬ - 8 М» 146 KB
АППАРАТ ДЛЯ ВОССТАНОВЛЕНИЯ ДЫХАНИЯ ГОРНОСПАСАТЕЛЬ 8 М СанктПетербург 2009 год АППАРАТ ДЛЯ ВОССТАНОВЛЕНИЯ ДЫХАНИЯ ГОРНОСПАСАТЕЛЬ 8 м Аппарат Горноспасатель 8м ГС8м предназначен для производства пострадавшему искусственного дыхания методо...
12973. ИССЛЕДОВАНИЕ СРЕДСТВ ЗВУКОИЗОЛЯЦИИ 496.5 KB
ИССЛЕДОВАНИЕ СРЕДСТВ ЗВУКОИЗОЛЯЦИИ ИССЛЕДОВАНИЕ СРЕДСТВ ЗВУКОИЗОЛЯЦИИ. Цель работы ознакомиться с типами глушителей шума принципами работы и методами оценки их эффективности. Физическая сущность звукоизоляции. Звукоизолирующая способность преграды коэ
12974. ИЗОЛИРУЮЩИЕ РЕГЕНЕРАТИВНЫЕ РЕСПИРАТОРЫ КАК ЭЛЕМЕНТ ТЕХНИЧЕСКОГО ОСНАЩЕНИЯ ВГСЧ 1.06 MB
ИЗОЛИРУЮЩИЕ РЕГЕНЕРАТИВНЫЕ РЕСПИРАТОРЫ КАК ЭЛЕМЕНТ ТЕХНИЧЕСКОГО ОСНАЩЕНИЯ ВГСЧ СОДЕРЖАНИЕ: Техническое оснащение ВГСЧ. Изолирующие регенеративные респираторы. респиратор р12: устройство и принцип действия...
12975. Правила оказания первой (доврачебной) помощи при несчастных случаях и заболеваниях. 1.13 MB
Правила оказания первой доврачебной помощи при несчастных случаях и заболеваниях. Оглавление Оглавление 1. Организация первой помощи при травмах и заболеваниях 2. Оказание первой помощи при остановке дыхания и сердечной деятельности 3. Раны и кровотечения време
12976. ПРОМЫШЛЕННАЯ ПЫЛЬ И СРЕДСТВА ПЫЛЕУЛАВЛИВАНИЯ 180.5 KB
ПРОМЫШЛЕННАЯ ПЫЛЬ И СРЕДСТВА ПЫЛЕУЛАВЛИВАНИЯ Характеристика промышленной пыли Производственная пыль является наиболее распространенным вредным фактором производственной среды. Многочисленные технологические процессы и операции в промышленности на транспорте...
12977. ПРОМЫШЛЕННЫЕ СРЕДСТВА ЗАЩИТЫ ОРГАНОВ ДЫХАНИЯ 380.5 KB
ПРОМЫШЛЕННЫЕ СРЕДСТВА ЗАЩИТЫ ОРГАНОВ ДЫХАНИЯ ВВЕДЕНИЕ В нашей стране в системе профилактических мероприятий направленных на обеспечение безопасных условий труда и снижение профессиональных отравлений и заболеваний в металлургической химической промышленн...
12978. Математичний аналіз. Відповіді до екзамену 4.31 MB
Математичний аналіз Числова послідовність та її границя. Означення. Послідовність це будьяка функція fn визначена на множині N натуральних чисел. Означення. Послідовність називають обмеженою якщо існують такі числа т і М що для всіх п викону
12979. Математичне моделювання та диференціальні рівняння 300.5 KB
Лекція 1 Математичне моделювання та диференціальні рівняння. 1.1. Поняття математичного моделювання. Поняття математичного моделювання трактується різними авторами по своєму. Ми будемо його повязувати з нашою спеціалізацією прикладна математика. Під ма

© 2024 okna-blitz.ru
Окна и балконы