Магнитное поле судна. Основные характеристики земного и судового магнитных полей. Уравнения Пуассона и А. Смитта. Судовые магнитные силы (СМС). Анализ уравнений Пуассона

Девиация магнитного компаса. Исправление и перевод румбов

Металлический корпус судна, различные металлические изделия, двигатели являются причиной отклонения магнитной стрелки компаса от магнитного меридиана, т. е. от направления, по которому должна расположиться магнитная стрелка на суше. Магнитные силовые линии земли, пересекая судовое железо, превращают его в магниты. Последние создают собственное магнитное поле, под влиянием которого магнитная стрелка на судне получает дополнительное отклонение от направления магнитного меридиана.

Отклонение стрелки под влиянием магнитных сил судового железа называется девиацией компаса. Угол, заключенный между нордовой частью магнитного меридиана Nm и нордовой частью компасного меридиана Nk , называется девиацией магнитного компаса (бетта) (рис. 44).

Девиация может быть как положительной - восточной, или остовой, так и отрицательной - западной, или вестовой. Девиация - величина переменная и меняется в зависимости от широты и курса судна, так как намагниченность судового железа зависит от его расположения относительно магнитных силовых линий земли.

Для расчета магнитного курса МК необходимо к величине компасного курса КК алгебраически прибавить величину девиации 6 на данном курсе:

Кк+(+-(бетта)) = МК

Или МК-(+ - (бетта))=КК.

Например, компасный курс КК равен 80°, при этом девиация магнитного компаса (бетта) = 20° со знаком плюс. Тогда по формуле находим:

МК = КК + (+-(бетта)) = 80°+ (+ 20°) = 100°.

Если собственное магнитное поле судна большое, то компасом пользоваться трудно, а иногда он вообще перестает работать. Поэтому девиацию необходимо сначала уничтожить при помощи компенсационных магнитов, расположенных в поктоузе компаса, и брусков мягкого железа, устанавливаемых в непосредственной близости от компаса.

После уничтожения девиации приступают к определению остаточной девиации на различных курсах судна. Уничтожение и определение остаточной девиации и составление девиационной таблицы для данного компаса производится специалистом-девиатором на специально оборудованном створными знаками девиационном полигоне. Девиация считается уничтоженной вполне удовлетворительно, если ее величина на всех курсах не превышает +4°.

Рис 44 . Исправление и перевод румбов

Как уже говорилось, на картах необходимо прокладывать истинные курсы и пеленги. Для получения истинных курсов и пеленгов нужно в показания компаса, установленного на судне, внести определенную поправку, так как он показывает компасный курс и компасные пеленги. Поправкой компаса (дельта) к называется угол, заключенный между нордовой частью истинного меридиана N и и нордовой частью компасного меридиана Nк. Поправка компаса (дельта)к равна алгебраической сумме девиации (бетта) и склонения d, т. е.:

(дельа) к = (+-бетта) + (+-d)

Отсюда следует, что для получения истинных величин необходимо к компасным величинам прибавить поправку компаса с ее знаком:

ИК = КК + (+ -(дельта) к)

Или КК = ИК-(+ (дельта)к).

На рис. 43 показан переход от МК к КК через склонение.

На рис. 44 показана взаимосвязь между всеми величинами, от которых зависит правильное определение истинных направлений в море. Углы, образованные линиями NK, Nu, Nn и линиями курса и пеленга, носят следующие наименования:

Компасный курс К К - угол между линией компасного меридиана NK и линией курса.

Компасный пеленг КП - угол между линией компасного меридиана NK и линией пеленга.

Магнитный курс МК - угол между магнитным меридианом NM и линией курса.

Магнитный пеленг МП - угол между линией магнитного меридиана NM и линией пеленга.

Истинный курс И К - угол между линией истинного меридиана Na и линией курса.

Истинный пеленг ИП - угол между линией истинного меридиана и линией пеленга.

Девиация (бетта) - угол между линией компасного меридиана NK и линией магнитного меридиана NM.

Склонение d - угол между линией магнитного меридиана NM и линией истинного меридиана Nu.

Поправка компаса (дельта) к - угол между линией истинного меридиана N" и линией компасного меридиана N K.

Существует мнемоническое правило, которое помогает судоводителю правильно оперировать величинами истинных магнитных и компасных направлений. Для выполнения этого правила необходимо запомнить последовательность: ИК-d- МК-(бетта)- КК. Если из ИК алгебраически вычесть склонение d, то получим рядом стоящую вправо от ИК величину МК; если из МК вычтем алгебраически девиацию (бетта), то получим рядом стоящую вправо от МК величину КК. Если мы из ИК алгебраически вычтем обе стоящие вправо от ИК величины d - склонение (бетта) -девиацию, то получим КК. При условии, что у нас имеется компасный курс и нужно получить МК, производим обратные действия: к компасному курсу КК прибавляем алгебраически стоящую слева от него девиацию 6 и получаем магнитныи курс МК. Если к магнитному курсу алгебраически прибавить склонение d, стоящее слева от магнитного курса, то получим истинный курс ИК. и, наконец, если к компасному курсу алгебраически прибавить девиацию (бетта) и склонение d, представляющие не что иное, как поправку компаса ДК, то получим истинный курс - ИК.

Судоводитель-любитель при расчетах и работе на карте пользуется только истинными значениями курсов, пеленгов и курсовых углов, а магнитные компасы дают только их компасное значение, поэтому ему приходится производить вычисления по приведенным выше формулам. Переход от известных компасных и магнитных величин к неизвестным истинным называется исправлением румбов. Переход от известных истинных величин к неизвестным компасным и магнитным называется переводом румбов.

Вектор Т напряжённости магнитного поля Земли лежит в плоскости магнитного меридиана и составляет с плоскостью горизонта некоторый угол I . Этот угол называется магнитным наклонением и может изменяться в пределах .

Наряду с указанным, рассматривают проекции Н и Z вектора Т на плоскость горизонта и на местную вертикаль, соответственно. Эти составляющие определяются следующими равенствами:

. (1.1)
На навигационных картах могут наноситься линии равных значений указанных параметров. Изогонами называют линии равных значений магнитного склонения. Линии равных значений магнитного наклонения получили название изоклин . Линии равных значений Н и Z называются изодинамами .

Земное магнитное поле претерпевает медленное годовое изменение, а также достаточно быстрые вариации, обусловленные, например, активизацией процессов на Солнце. Кроме того, на равномерность магнитного поля Земли существенное влияние оказывают местные магнитные аномалии.

магнитомягкие материалы намагничиваются компонентами магнитного поля Земли. Будем представлять судовое и земное магнитные поля в виде соответствующих составляющих X¢,Y¢,Z¢ и X,Y,Z (рис. 4.1) векторов напряженности (или индукции) этих полей по осям системы координат охуz , жёстко связанной с судном. Особенности намагничивания магнитомягких материалов земным магнитным полем заключается в том, что они будучи намагниченными од

Важно!
ной из компонент этого поля, например компонентой Х, создают свое поле, имеющее, общем в случае, все три компоненты, величины которых пропорциональны намагничивающему полю. Таким образом, при намагничивании материала компонентой Х сам намагниченный материал создаёт поле, имеющее со
ставляющие аХ , и , направленные по осям ох , оу и oz, соответственно (Рис. 4.1). Здесь а, d и g – коэффициенты пропорциональности, определяющие величину указанных составляющих в долях намагничивающего поля. Аналогично, материал, намагниченный составляющей Y земного поля, будет создавать собственное поле с компонентами bY, eY и hY , а намагниченный составляющей Z – с компонентами cZ, fZ и kZ .

Учитывая сказанное, результирующие напряженности судового магнитного поля вдоль осей, связанных с судном, можно представить в виде следующих равенств (рис. 1.33):

X¢ = X + aX + bY + cZ + P,

Y¢ = Y + dX + eY +fZ + Q, (4.1)

Z¢ = Z + gX + hY + kZ + R,

где H, Q и R – компоненты магнитного поля, порождаемые постоянным судовым магнетизмом. Уравнения (4.1) получили название уравнений Пуассона , а коэффициенты а…к коэффициентов Пуассона . Полученные уравнения характеризуют структуру судового магнитного поля и являются исходными для проведения различных оценок на практике. Однако для процесса судовождения основной интерес представляет связь параметров судового поля с ошибками МК, т.е. с той девиацией, которая возникает у компаса, установленного в заданном месте на судне. Эта девиация определяется отклонением от плоскости магнитного меридиана горизонтальнойсоставляющей Н¢ (рис. 4.1) судового магнитного поля, образуемой геометрической суммой векторов и , в направлении которой устанавливаются оси магнитов картушки компаса. Найдём соотношения, определяющие указанную связь.

Уравнение девиации

Рассмотрим рис. 4.2, отображающий взаимную ориентацию векторов судового и земного магнитных полей. Как следует из рисунка, девиация магнитного компаса, равная разности магнитного МК и компасного КК курсов судна

=МК – КК , (4.2)

может быть определена следующим равенством:

. (4.3)

В свою очередь, из рисунка следует, что

H¢sin =X¢sin MK + Y¢cos MK, а H¢cos =X¢cos MK – Y¢sin MK. (4.4)

Подставляя в полученные равенства значения X ¢ и Y¢ из уравнений Пуассона (4.1), найдём:

H¢sin =[(1+a)X + bY + cZ + P] sin MK + [(1+e)Y + dX + fZ +Q] cos MK,


H¢cos =[(1+a)X + bY + cZ + P] cos MK – [(1 + e)Y +dX + fZ = Q] sin MK.

В последних равенствах учтём, что

Х=Н cosMK, Y= - H sinMK. (4.6) Тогда получим:

(4.7)

Раскрывая квадратные скобки равенств (4.7), найдём:

(4.8)

Группируя члены по гармоникам, будем иметь:

(4.9)

(4.9)

Обозначим и поделим левые и правые части равенств (4.9) на . В результате получим:

(4.10)

Введём следующие обозначения:

и подставим их в равенства (4.10). В результате будем иметь:

Поделив первое равенство (4.12) на второе, получим искомое выражение для тангенса девиации магнитного компаса:

Это выражение получило название формулы Арчибальда Смита по имени английского учёного Х1Х века. Оно определяет зависимость девиации МК от параметров А¢…E¢ и магнитных курсов судна. Параметры A¢…E¢ получили название коэффициентов девиации.

На практике чаще представляют девиацию МК в функции компасных курсов судна . Для того чтобы получить указанное выражение умножим равенство (4.13) на его знаменатель. В результате будем иметь:

Раскрывая скобки и перенося все члены кроме первого в правую часть равенства, найдём:

Учитывая, что КК=МК - , а 2МК-δ = 2КК+ , окончательно получим выражение для синуса девиации магнитного компаса как функцию компасных курсов судна:

Важно!
Таким образом, определены выражения, характеризующие закон изменения девиации МК и позволяющие дать её численную оценку в различных условиях плавания. Большее распространение для решения указанной задачи получило равенство (4.16). Однако, какое бы равенство не использовалось при выполнении оценок, следует иметь в виду (см. соотношения 4.11), что коэффициенты девиации А¢,D¢ и E¢ практически не зависят от места судна, а коэффициенты B¢ и C¢ изменяются с изменением широты места судна, так как от указанного параметра зависит горизонтальная составляющая Н напряжённости магнитного поля Земли. Из тех же выражений видно, что коэффициенты девиации не зависят от курса судна.

Магнитное поле Земли можно обнаружить с помощью магнитной стрелки. Если стрелку подвесить так, чтобы она могла свободно вращаться в горизонтальной и в вертикальной плоскости, то в каждой точке земной поверхности она под воздействием магнитных сил стремится принять вполне определенное положение в пространстве. Магнитное поле Земли существует на поверхности, под землей и в космосе. Магнитное поле земли вызывается процессами внутри её коры и в космическом пространстве и тесным образом связанно с деятельностью Солнца.

Напряженность магнитного поля Земли в среднем равна 40 А/м.

Вообще, магнитное поле Земли является неоднородным, но в ограниченном пространстве судна его можно считать однородным.

Разложим напряженность, как вектор, на отдельные составляющие, получившие название элементов земного магнетизма. К ним относятся (см. рис.) горизонтальная составляющая напряженности магнитного поля Земли H , вертикальная составляющаяZ и магнитное склонениеd – горизонтальный угол, образованный направлением истинного меридианаON и составляющейH , которая лежит в плоскости магнитного меридиана. Кроме этих элементов, в вектор напряженности магнитного поля входит магнитное наклонениеI – вертикальный угол между горизонтальной плоскостью и направлением вектора земного магнетизма.

Из рисунка можно установить следующую связь между элементами земного магнетизма:

Если нужно определить проекции вектора земного магнетизма на направление истинного меридиана или первого вертикала, то можно воспользоваться следующими равенствами

Линии, соединяющие равные значения HиZназываются изодины (линии равной напряженности). Изолинии магнитного склонения – изогоны, изолинии магнитного наклонения – изоклины. Такие линии нанесены на специальной карте земного магнетизма. Изоклины нулевого наклонения образуют магнитный экватор.

Разложим вектор земного магнетизма на судовые оси координат:

Проекции напряженности магнитного поля земли на судовые оси:

Горизонтальная составляющая, которая определяет работу магнитного компаса изменяется в различных местах земного шара от нуля (на магнитных полюсах) до 32 А/м у южной оконечности Азии. Уменьшение этой составляющей происходит от в направлении от экватора к полюсам.

Вертикальная составляющая напряженности магнитного поля Земли изменяется от нуля (на магнитном экваторе) до 56 А/м в полярных районах.

Тема 3 (2 часа) магнитное поле судна. Уравнения пуассона и их анализ.

Корпус судна, его двигатель, судовые механизмы изготовлены из материалов, которые обладают некоторой остаточной намагниченностью. Кроме приобретенной во время постройки остаточной постоянной намагниченности, корпус судна и его механизмы не потеряли способности намагничиваться в магнитном поле Земли, которое постоянно воздействует на судно. Таким образом, в судовом железе можно выделить две составляющие: твердая намагничивается в период постройки и остается постоянной, мягкая составляющая намагничивается в магнитном поле Земли. Постоянный судовой магнетизм и намагничивание мягкого судового железа оказывают влияние на любой магнитный прибор на судне. В этом случае принято говорить, что в пространстве, окружающем судно действует судовое магнитное поле.

Судно со всем его оборудованием является телом весьма сложной формы, поэтому трудно рассчитывать на то, что оно намагничивается однородно. Однако намагничивание судна при постройке и в последующие периоды его плавания происходит в слабом магнитном поле Земли, к тому же магнитная восприимчивость судна, как единого целого невелика. Поэтому неоднородность его намагничивания оказывается незначительной, ею можно пренебречь и исходить из среднего значения намагниченности для всего судна в целом.

Следовательно, можно воспользоваться теоремой Пуассона об однородном намагничивании тел.

Теорема Пуассона формулируется следующим образом: магнитный потенциал U однородно намагниченного тела равен взятому со знаком минус скалярному произведению вектора намагниченности телана градиент потенциала силы притяжения, созданного массой данного тела:

где: -
- составляющие намагниченности судна по судовым осям

- производные величиныVпо этим осям, пропорциональные потенциалу притяжения, вызванного массой судна.

Чтобы перейти от потенциала к проекциям напряженности магнитного поля на судовые оси, продифференцируем (16) по переменным x , y , z , гдеJ – величина постоянная:

Вектор намагниченности тела выражается формулой (16). Разложим его на составляющие по судовым осям:

где: X , Y , Z - проекции на эти оси намагничивающего поля – магнитного моля Земли.

Подставим эти значения в предыдущие три уравнения:

Раскроем скобки в каждом из этих уравнений и введем обозначения

Полбхуясь этими обозначениями, можно записать так:

Эти уравнения выражают собой проекции напряженности магнитного поля судна в точке О (см рис). Если в точке О находится компас, то он покажет не только судовой магнетизм, но и воздействие магнитного поля Земли. Сложим алгебраически проекции напряженностей полей судна и Земли, чтобы выразить совместное действие их:

где со штрихом – проекции на судовые оси суммарного магнитного поля, без штриха – проекции на те же оси магнитного поля Земли, с ноликом – проекции напряженности магнитного поля судна. Отсюда:

Эти уравнения получили название уравнений Пуассона, так как они были выведены на основании теоремы Пуассона об однородном намагничивании тел.

a , b , c ,… k – параметры Пуассона. Они характеризуют собой мягкое железо: его магнитные качества, форму и размеры, расположение относительно центра компаса.

Слагаемые P , Q , R выражают магнитное поле постоянного судового магнетизма, обусловленного действием жесткого железа.

Все эти величины практически не изменяются для данного компаса и при данном магнитном состоянии судна. Если на судне произвести перемещение больших масс железа относительно компаса или переместить сам компас, то эти величины изменятся.

Курс судна не влияет на эти величины, магнитная широта очень слабо сказывается только на параметры Пуассона. Встряски судна, загрузка судна сказываются на его магнитном состоянии.


Настоящий стандарт устанавливает применяемые в науке, технике и производстве термины и определения основных понятий в области судового магнетизма.

Термины, установленные стандартом, обязательны для применения в документации всех видов, научно-технической, учебной и справочной литературе.

Для каждого понятия установлен один стандартизованный термин. Применение терминов-синонимов стандартизованного термина запрещается. Недопустимые к применению термины-синонимы приведены в стандарте в качестве справочных и обозначены «Ндп».

Для отдельных стандартизованных терминов в стандарте приведены в качестве справочных краткие формы, которые разрешается применять в случаях, исключающих возможность их различного толкования. Установленные определения можно, при необходимости, изменять по форме изложения, не допуская нарушения границ понятий.

В стандарте в качестве справочных приведены иностранные эквиваленты для ряда стандартизованных терминов на немецком (D), английском (Е) и французском (F) языках.


В стандарте приведены алфавитные указатели содержащихся в нем терминов на русском языке и их иностранных эквивалентов.

В стандарте имеется справочное приложение, содержащее общие понятия, применяемые в судовом магнетизме.

Стандартизованные термины набраны полужирным шрифтом, их краткая форма - светлым, а недопустимые синонимы - курсивом.

Определение

1. Судовой магнетизм

Е. Ship?s magnetism

Раздел магнетизма, исследующий и применяющий магнетизм судна, принципы построения судовых магнитных систем и технические средства, образующие эти системы

2. Магнетизм судна

Совокупность свойств судна и явлений, связанных с магнитным взаимодействием частей судна, по которым текут электрические токи, и намагниченных частей, обладающих магнитным моментом, и осуществляющихся магнитным полем.

Примечания:

1. Магнетизм судна может быть постоянным, полупостоянным, индуктированным, электрических токов.

2. Под магнетизмом судна подразумевается также магнетизм корабля, судовой конструкции или судового механизма

3. Судовое железо

Материалы конструкций и оборудования судна, способные приобретать магнетизм

4. Ферромагнитные массы судна

Ферромагнитные массы

Е. Ferromagnetic masses

F. Masses ferromagnetiques

Судовое железо, способное приобретать постоянный, полупостоянный, индуктированный магнетизм

Примечание. В зависимости от вида приобретаемого магнетизма ферромагнитные массы судна делятся на твердое, полутвердое и мягкое железо

5. Проводящие массы судна

Проводящие массы

Е. Permeable masses

F. Masses permeables

Судовое железо, способное приобретать магнетизм электрических токов

Совокупность магнитных моментов, создаваемых судовым железом

7. Магнитное состояние судна

Магнитное состояние

Е. Ship magnetic state

F. Etat magnetique du navire

Состояние судна, определяемое совокупностью магнитной нагрузки, коэрцитивности и внутренних магнитных полей

8. Магнитная предыстория судна

Магнитная предыстория

Процесс приобретения судном магнитного состояния, определяемого через предшествующие намагничивания и перемагничивания при энергетических воздействиях

9. Магнитная индукция на судне

Векторная величина, характеризующая плотность магнитного потока на судне или вблизи него

10. Девиация геомагнитного поля на судне

Девиация

Отклонение элементов вектора магнитной индукции на судне от соответствующих элементов полного вектора геомагнитного поля

11. Тензор магнитной деформации

Величина, характеризующая девиацию геомагнитного поля в точках на судне и определяемая магнитной нагрузкой судна

12. Нестабильность магнитной величины

По ГОСТ 19693-74

13. Неоднородность магнитной индукции на судне

Максимальное отклонение элемента вектора магнитного поля в определенной области на судне от его среднего значения в заданный момент времени

14. Магнитное направление носа судна

Магнитное направление

D. Richtung des Schiffs (Anliegender Kurs)

Направление носа судна, измеряемое углом в горизонтальной плоскости между северной частью плоскости магнитного меридиана и носовой частью диаметральной плоскости судна

15. Судовой магнитный компас

Магнитный компас

E. Ship magnetic compass

F. Compas magnetique du navire

D. Schiffsmagnetkompass

По ГОСТ 21063-81

16. Тесламетр

По ГОСТ 20906-75

17. Дифференциальный тесламетр

По ГОСТ 20906-75

18. Магнитный судовой испытательный стенд

Испытательный стенд, предназначенный для определения магнитных характеристик судна и (или) судовых магнитных систем и их частей.

Примечание. Магнитный испытательный стенд размещается в месте с известным магнитным полем

19. Компенсационное устройство магнетизма судна

Часть судовой магнитной системы, включающая технические средства для снижения магнетизма судна в местах расположения магниточувствительных элементов

20. Магнитный компенсатор

Элемент компенсационного устройства магнетизма судна, создающий компенсирующее магнитное поле в заданном направлении

21. Магнит-уничтожитель

Магнитный компенсатор в виде постоянного магнита

22. Креновой магнит

Магнит-уничтожитель для компенсации вертикального остаточного магнетизма

23. Широтный компенсатор

Ндп. Флиндерсбар

Е. Flinder?s bar

F. Barreau de Flinders

D. Flinders - Stange

Магнитный компенсатор вертикального индуктированного магнетизма

24. Электромагнитный компенсатор

Ндп. Компенсатор электромагнитных полей

Магнитный компенсатор, предназначенный для снижения магнетизма судна электрическим током

25. Маломагнитное судно

Судно, удовлетворяющее техническим требованиям по маломагнитности.

Примечание. Судно строится из слабомагнитных и немагнитных материалов

26. Определение девиации геомагнитного поля на судне

Е. Deviation finding

F. Relevage de la deviation

D. Deviationsbestimmung

Процесс определения величины и знака девиации геомагнитного поля на судне на заданном магнитном курсе судна

27. Магнитная обработка судна

Магнитная обработка

Обработка судна, с целью приведения судна в заданное магнитное состояние

28. Размагничивание судна

F. Demagnetisation du navire

D. Magnetischer Eigenschutz (MES)

Нейтрализация магнитного поля судна.

Примечание. Размагничивание судна производится с целью снижения девиации геомагнитного поля

29. Девиация судового магнитного компаса

Отклонение показаний судового магнитного компаса, определяемое углом в горизонтальной плоскости между магнитным Севером и компасным Севером, обусловленное девиацией магнитного поля на судне

30. Девиация тесламетра

Отклонение показаний судового тесламетра, обусловленное девиацией геомагнитного поля на судне

(Измененная редакция, Изм. № 1 ).

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА РУССКОМ ЯЗЫКЕ


Индукция на судне магнитная 9

Компас судовой магнитный 15

Компас магнитный судовой 15

Компенсатор магнитный 20

Компенсатор широтный 23


Магнит-уничтожитель 21

Массы проводящие 5

Массы судна проводящие 5

Массы судна ферромагнитные 4

Массы ферромагнитные 4

6

Направление магнитное 14

Направление носа судна магнитное 14

Неоднородность магнитной индукции на судне 13

Нестабильность магнитной величины 12

Обработка магнитная 27

Обработка судна магнитная 27

Определение девиации геомагнитного поля на судне 26

Предыстория магнитная 8

Предыстория судна магнитная 8

Размагничивание судна 28

Состояние магнитное 7

Состояние судна магнитное 7

Стенд испытательный судовой магнитный 18

Стенд испытательный магнитный судовой 18

Судно маломагнитное 25

Тензор магнитной деформации 11

Тесламетр 16

Тесламетр дифференциальный 17

Устройство магнетизма судна компенсационное 19

Флиндерсбар 23

(Измененная редакция, Изм. № 1 ).

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА АНГЛИЙСКОМ ЯЗЫКЕ

Deviation finding 26

Ferromagnetic masses 4

Magnetic testing stand 18

Permeable masses 5

Ship magnetic compass 15

Ship magnetic state 7

Ships magnetism 1

(Измененная редакция, Изм. № 1 ).

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА ФРАНЦУЗСКОМ ЯЗЫКЕ

Banc d?essais magnetique 18

Barreau de Flinders 23

Compas magnetique du navire 15

Demagnetisation du navire 28

Etat magnetique du navire 7

Masses ferromagnetiques 4

Masses permeables 5

Relevage de la deviation 26

(Измененная редакция, Изм. № 1 ).

АЛФАВИТНЫЙ УКАЗАТЕЛЬ ТЕРМИНОВ НА НЕМЕЦКОМ ЯЗЫКЕ

Anliegender Kurs 14

Deviatiosbestimmung 26

Flinders-Stange 23

Instabilitat 12

Magnetischer Eigenschutz (MES) 28

Richtung des Schiffs 14

Schiffsmagnetkompass 15

(Измененная редакция , Изм . № 1 ).

ПРИЛОЖЕНИЕ

Справочное

ОБЩИЕ ПОНЯТИЯ, ПРИМЕНЯЕМЫЕ В СУДОВОМ МАГНЕТИЗМЕ

Определение

1. Судовая магнитная система

Магнитная система, состоящая из судового железа и технических средств, предназначенных для повышения эффективности эксплуатации судна с использованием магнитного поля.

Примечание. В зависимости от назначения различают судовую магнитную систему курсоуказания, судовую магнитную навигационную систему, судовую магнитную систему компенсации

2. Полный вектор геомагнитного поля

Величина, характеризующая магнитную индукцию стационарного геомагнитного поля в море

3. Плоскость магнитного меридиана

Плоскость, перпендикулярная земной поверхности, проходящая через полный вектор геомагнитного поля в точке наблюдения

4. Намагничение судна

Распределение намагниченности судового железа, обусловленное намагничиванием судна в заданном направлении

5. Коэрцитивность судна

Физическая величина, характеризующая способность судна сохранять остаточный магнетизм пропорционально коэрцитивным силам его намагниченных и перемагниченных частей

6. Магниточувствительный элемент

Элемент, осуществляющий преобразование индукции магнитного поля в. величину, удобную для наблюдения или передачи по линиям связи

7. Магнитный Север

Северная часть плоскости магнитного меридиана

8. Компасный Север

Северная часть плоскости компасного меридиана

Содержание статьи

КОМПАС, прибор для определения горизонтальных направлений на местности. Применяется для определения направления, в котором движется морское, воздушное судно, наземное транспортное средство; направления, в котором идет пешеход; направления на некоторый объект или ориентир. Компасы подразделяются на два основных класса: магнитные компасы типа стрелочных, которыми пользуются топографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

Картушка компаса.

Для определения направлений в компасе имеется картушка (рис. 1) – круговая шкала с 360 делениями (соответствующими одному угловому градусу каждое), размеченными так, что отсчет ведется от нуля по часовой стрелке. Направлению на север (норд, N, или С) обычно соответствует 0° , на восток (ост, O, E, или В) – 90° , на юг (зюйд, S, или Ю) – 180° , на запад (вест, W, или З) – 270° . Это главные компасные румбы (страны света). Между ними расположены «четвертные» румбы: норд-ост, или С-В (45° ), зюйд-ост, или Ю-В (135° ), зюйд-вест, или Ю-З (225° ) и норд-вест, или С-З (315° ). Между главными и четвертными расположены 16 «основных» румбов, таких, как норд-норд-ост и норд-норд-вест (некогда было еще 16 румбов, таких, как «норд-тень-вест», называвшихся просто румбами).

МАГНИТНЫЙ КОМПАС

Принцип действия.

В приборе, указывающем направление, должно быть некое опорное направление, от которого отсчитывались бы все другие. В магнитном компасе таким направлением служит линия, соединяющая Северный и Южный полюса Земли. В этом направлении сам собой устанавливается магнитный стержень, если его подвесить так, чтобы он мог свободно поворачиваться в горизонтальной плоскости. Дело в том, что в магнитном поле Земли на магнитный стержень действует вращающая пара сил, устанавливающая его в направлении магнитного поля. В магнитном компасе роль такого стержня играет намагниченная стрелка, которая при измерении сама устанавливается параллельно магнитному полю Земли.

Стрелочный компас.

Это самый распространенный вид магнитного компаса. Он часто применяется в карманном варианте. В стрелочном компасе (рис. 2) имеется тонкая магнитная стрелка, установленная свободно в своей средней точке на вертикальной оси, что позволяет ей поворачиваться в горизонтальной плоскости. Северный конец стрелки помечен, и соосно с ней закреплена картушка. При измерении компас необходимо держать в руке или установить на штативе так, чтобы плоскость вращения стрелки была строго горизонтальна. Тогда северный конец стрелки будет указывать на северный магнитный полюс Земли. Компас, приспособленный для топографов, представляет собой пеленгаторный прибор, т.е. прибор для измерения азимута. Он обычно снабжен зрительной трубой, которую поворачивают до совмещения с нужным объектом, чтобы затем считать по картушке азимут объекта.

Жидкостный компас.

Жидкостный компас, или компас с плавающей картушкой, – это самый точный и стабильный из всех магнитных компасов. Он часто применяется на морских судах и потому называется судовым. Конструкции такого компаса разнообразны; в типичном варианте он представляет собой наполненный жидкостью «котелок» (рис. 3), в котором на вертикальной оси закреплена алюминиевая картушка. По разные стороны от оси к картушке снизу прикреплены пара или две пары магнитов. В центре картушки имеется полый полусферический выступ – поплавок, ослабляющий нажим на опору оси (когда котелок наполнен компасной жидкостью). Ось картушки, пропущенная через центр поплавка, опирается на каменный подпятник, изготовляемый обычно из синтетического сапфира. Подпятник закреплен на неподвижном диске с «курсовой чертой». В нижней части котелка имеются два отверстия, через которые жидкость может переливаться в расширительную камеру, компенсируя изменения давления и температуры.

Картушка плавает на поверхности компасной жидкости. Жидкость, кроме того, успокаивает колебания картушки, вызываемые качкой. Вода не годится для судового компаса, так как она замерзает. Используется смесь 45% этилового спирта с 55% дистиллированной воды, смесь глицерина с дистиллированной водой либо высокочистый нефтяной дистиллят.

Котелок компаса отлит из бронзы и снабжен стеклянным колпаком с уплотнением, исключающим возможность протечки. В верхней части котелка закреплено азимутное, или пеленгаторное, кольцо. Оно позволяет определять направление на различные объекты относительно курса судна. Котелок компаса закреплен в своем подвесе на внутреннем кольце универсального (карданного) шарнира, в котором он может свободно поворачиваться, сохраняя горизонтальное положение, в условиях качки.

Котелок компаса закрепляется так, что его специальная стрелка или метка, называемая курсовой, либо черная линия, называемая курсовой чертой, указывает на нос судна. При изменении курса судна картушка компаса удерживается на месте магнитами, неизменно сохраняющими свое направление север – юг. По смещению курсовой метки или черты относительно картушки можно контролировать изменения курса.

ПОПРАВКА КОМПАСА

Поправкой компаса называется отклонение его показаний от истинного норда (севера). Ее причины – девиация магнитной стрелки и магнитное склонение.

Девиация.

Компас показывает на т.н. компасный, а не на магнитный норд (северный магнитный полюс), и соответствующая угловая разность направлений называется девиацией. Она обусловлена наличием местных магнитных полей, налагающихся на магнитное поле Земли. Местное магнитное поле могут создавать корпус судна, груз, крупные массы железных руд, расположенные неподалеку от компаса, и другие объекты. Правильное направление получают, учитывая в показаниях компаса поправку на девиацию.

Судовой магнетизм.

Местные магнитные поля, создаваемые корпусом судна и охватываемые понятием судового магнетизма, делятся на переменные и постоянные. Переменный судовой магнетизм наводится в стальном корпусе судна магнитным полем Земли. Напряженность переменного судового магнетизма изменяется в зависимости от курса судна и от географической широты. Постоянный судовой магнетизм наводится в процессе постройки судна, когда под влиянием вибрации, вызываемой, например, операциями клепки, стальная обшивка становится постоянным магнитом. Напряженность и полярность (направление) постоянного судового магнетизма зависят от местоположения (широты) и ориентации корпуса судна в период его сборки. Постоянный магнетизм частично теряется после спуска судна на воду и после того, как оно побывает в бурном море. Кроме того, он несколько изменяется в процессе «старения» корпуса, но его изменения существенно уменьшаются после эксплуатации судна в течение года.

Судовой магнетизм можно разложить на три взаимно перпендикулярные компоненты: продольную (относительно судна), поперечную горизонтальную и поперечную вертикальную. Отклонения магнитной стрелки, обусловленные судовым магнетизмом, корректируют, помещая возле компаса постоянные магниты, параллельные этим компонентам.

Нактоуз.

Судовой компас обычно устанавливается в универсальном шарнире на специальной подставке, называемой нактоузом (рис. 4). Нактоуз жестко и надежно прикрепляется к палубе судна, обычно на средней линии последнего. На нактоузе устанавливаются также магниты, компенсирующие влияние судового магнетизма, и закрепляется защитный колпак для компаса с внутренним осветителем картушки. Ранее нактоуз выполнялся в виде резной фигуры из дерева, но на современных судах это просто цилиндрический стенд.

Магнитное склонение.

Магнитное склонение – это угловая разница между магнитным и истинным нордом, обусловленная тем, что магнитный северный полюс Земли смещен на 2100 км относительно истинного, географического.

Карта склонений.

Магнитное склонение изменяется по времени и от точки к точке на земной поверхности. В результате измерений магнитного поля Земли получены карты склонения, которые дают величину магнитного склонения и скорость его изменения в разных районах. Контуры нулевого магнитного склонения на таких картах, исходящие из северного магнитного полюса, называются агоническими линиями или агонами, а контуры равного магнитного склонения – изогоническими или изогонами.

Учет поправки компаса.

В настоящее время находит применение целый ряд разных способов учета поправки компаса. Все они одинаково хороши, а потому достаточно привести для примера лишь один, принятый в ВМС США. Девиации и магнитные склонения к востоку считаются положительными, а к западу – отрицательными. Вычисления производят по следующим формулам:

Магн. напр. = Комп. напр. + Девиация,

Комп. напр. = Магн. напр. + Склонение.

© 2024 okna-blitz.ru
Окна и балконы